Payment channels allow participants to repeatedly transfer Ether off-chain.
Here is how this contract is used:
This is called a unidirectional payment channel since the payment can go in only a single direction: from Alice to Bob.
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.26;
import "./ECDSA.sol";
contract ReentrancyGuard {
bool private locked;
modifier guard() {
require(!locked);
locked = true;
_;
locked = false;
}
}
contract UniDirectionalPaymentChannel is ReentrancyGuard {
using ECDSA for bytes32;
address payable public sender;
address payable public receiver;
uint256 private constant DURATION = 7 * 24 * 60 * 60;
uint256 public expiresAt;
constructor(address payable _receiver) payable {
require(_receiver != address(0), "receiver = zero address");
sender = payable(msg.sender);
receiver = _receiver;
expiresAt = block.timestamp + DURATION;
}
function _getHash(uint256 _amount) private view returns (bytes32) {
// NOTE: sign with address of this contract to protect against
// replay attack on other contracts
return keccak256(abi.encodePacked(address(this), _amount));
}
function getHash(uint256 _amount) external view returns (bytes32) {
return _getHash(_amount);
}
function _getEthSignedHash(uint256 _amount) private view returns (bytes32) {
return _getHash(_amount).toEthSignedMessageHash();
}
function getEthSignedHash(uint256 _amount) external view returns (bytes32) {
return _getEthSignedHash(_amount);
}
function _verify(uint256 _amount, bytes memory _sig) private view returns (bool) {
return _getEthSignedHash(_amount).recover(_sig) == sender;
}
function verify(uint256 _amount, bytes memory _sig) external view returns (bool) {
return _verify(_amount, _sig);
}
function close(uint256 _amount, bytes memory _sig) external guard {
require(msg.sender == receiver, "!receiver");
require(_verify(_amount, _sig), "invalid sig");
(bool sent,) = receiver.call{value: _amount}("");
require(sent, "Failed to send Ether");
selfdestruct(sender);
}
function cancel() external {
require(msg.sender == sender, "!sender");
require(block.timestamp >= expiresAt, "!expired");
selfdestruct(sender);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.26;
// OpenZeppelin Contracts (last updated v4.5.0) (utils/cryptography/ECDSA.sol)
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS,
InvalidSignatureV
}
function _throwError(RecoverError error) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert("ECDSA: invalid signature");
} else if (error == RecoverError.InvalidSignatureLength) {
revert("ECDSA: invalid signature length");
} else if (error == RecoverError.InvalidSignatureS) {
revert("ECDSA: invalid signature 's' value");
} else if (error == RecoverError.InvalidSignatureV) {
revert("ECDSA: invalid signature 'v' value");
}
}
function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
// Check the signature length
// - case 65: r,s,v signature (standard)
// - case 64: r,vs signature (cf https://eips.ethereum.org/EIPS/eip-2098) _Available since v4.1._
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else if (signature.length == 64) {
bytes32 r;
bytes32 vs;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
assembly {
r := mload(add(signature, 0x20))
vs := mload(add(signature, 0x40))
}
return tryRecover(hash, r, vs);
} else {
return (address(0), RecoverError.InvalidSignatureLength);
}
}
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, signature);
_throwError(error);
return recovered;
}
function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, r, vs);
_throwError(error);
return recovered;
}
function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS);
}
if (v != 27 && v != 28) {
return (address(0), RecoverError.InvalidSignatureV);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature);
}
return (signer, RecoverError.NoError);
}
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, v, r, s);
_throwError(error);
return recovered;
}
function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) {
// 32 is the length in bytes of hash,
// enforced by the type signature above
return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash));
}
}